Summary of Quantum Numbers

n = 1, 2, 3,.... Principal Quantum Number (Describes the size and energy of orbital)

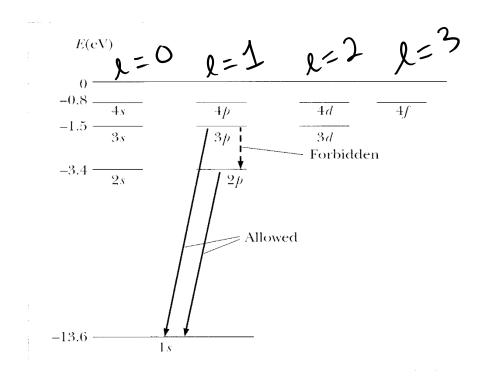
 ℓ = 0, 1, 2, 3...(n-1) Orbital (angular) Quantum Number (Describes the shape of the orbital)

 m_{ℓ} = 0,±1, ±2, ±3,...., ± ℓ Magnetic Quantum Number (Describes the orientation of the orbital in space)

Orbital – probability density (electron cloud) associated with $\Psi(\mathbf{r},t)$

Spectroscopic Notation

- 1. States with the same 'n' form a shell.
- 2. States with the same 'n' and 'l' form subshells.


<u>shell symbol</u>	<u>ℓ</u>	<u>subshell symbol</u>
K	0	S
L	1	р
M	2	d
N	3	f
	<u>shell symbol</u> K L M N	shell symbol ℓ K 0 L 1 M 2 N 3

n	l	m_l	m_l Spectroscopic Notation Shell		
1	0	0	1 <i>s</i>	K	
2 2	0 1	$0 \\ -1, 0, 1$	$\begin{pmatrix} 2s \\ 2p \end{pmatrix}$	L	
3 3 3	0 1 2	$0 \\ -1, 0, 1 \\ -2, -1, 0, 1, 2$	$\begin{pmatrix} 3s \\ 3p \\ 3d \end{pmatrix}$	М	
4 and so on.	0	0	4s	N	

Selection Rule for Allowed Transitions

To conserve total angular momentum (atom + photon) in optical transitions, the quantum number ' ℓ ' of the atom can only change by one unit:

$$\Delta \ell = \pm 1$$

